

Portfolio Index

Dynamic Keyboard Layers

Skills Used

▪ AutoHotkey

▪ Software Development

Rover Concept Pitt Rocketry

Skills Used

▪ 3D Modeling

▪ Top-Down Design

▪ 3D Printing

Scouting Data Dashboard

Skills Used

▪ Python

▪ Software Development

▪ Data Analysis

▪ Communication/Collaboration

SOL(Robotics)

Skills Used

▪ Robotics

▪ 3D Modeling

▪ Top-Down Design

▪ Sensor Design

▪ Java Programing

▪ Machining

Dynamic Keyboard Layers

Overview

 This is an implementation of dynamic keyboard layers. This is a complex concept to explain but

it quickly becomes second nature to use.

 I first need to explain what a normal keyboard layer is. A keyboard layer is a set of key bindings

that can be reached by holding a modifier key. The most widely used example of this is the shift key.

Normally keys are mapped to lowercase letters. When the shift key is held the “uppercase layer” is

activated AND THE KEYS BECOME MAPPED TO THEIR UPPERCASE EQUIVALENTS. This is

exactly how the script works. By holding a toggle key you activate a dynamic layer and the functionality

of your keys change.

 The dynamic aspect of these keyboard layers comes into play because the keyboard layer that

is activated is dependent on the application a user is currently using. This means that the “6” key on

this layer could be used to change tabs when a user is using a browser and select a line when they are

using their favorite text editor (VSCode in my case). This happens with no input from the user to switch

the key binding for the application being used.

 I use this script along with my tiling manager daily and it makes interacting with my computer

infinitely more intuitive.

Configuration

 Each keyboard layer along with the toggle key are completely configurable through a

configuration utility. This utility writes each layer to a config file in a folder called “Hotkeys” in the same

directory as the script itself. These files include: the application the layer applies to, keys to send on a

key down event, and keys to send on a key up event. There are also two special configs.

 The first special config defines the keys to include in the keyboard layer(s) as well as what

should be sent when those keys are in their untoggled state. I use this apply the dynamic layers to F13-

F24 so I don’t remap any of the keys normally on my keyboard, these keys send 0-9, “-“, and

“backspace” normally. These mappings make typing numbers with just one had simple, it’s basically a

numpad.

 The second special config is the “default” config. This is the layer that is activated in applications

that don’t have their own key map. I have this mapped to be common hotkeys like ctrl-s, and alt-tab.

Hardware implementation

 I’m currently working on implementing all the functionality of my script on a mouse. This would

let users bring the functionality with them wherever they go. I’ve been working with my roommates to

make this a reality. We’ve gone to a few pitch competitions in order to get initial funding so we can build

our first hardware-based prototype. Our long term goal is to sell the mouse as a full product. I wrote all

the code in our prototype for my own personal use I’m working with my roommates now to mimic this

functionality in the hardware on a mouse.

 I’ve been developing, maintaining, and using this script for about 5 years. It’s all written in AHK

a scripting language for windows.

Click or scan the QR code to see a GIF that demonstrated the dynamic layers. You can also

find a link to the code on my GitHub.

https://www.zacharycolimon.com/posts/2020-05-10/MOUSE-SCRIPT.html

Rover Concept Pitt Rocketry

Overview

 This rover was designed as a part of Pitt’s 2019-2020 USLI

payload. It was tasked with surviving a rocket flight then

collecting an ice simulant made of Injection molding pellets.

 The Idea behind this rover was that with just two motors

and some fancy geometry we could create a rover capable of

retaining itself inside a rocket during flight, deploying from that

rocket after landing, then traveling across a field and collecting

the ice simulant.

Wheels

 That Fancy geometry came in the form of these wheels with

thread shaped scoops. The threads allow the drone to screw into the

rocket body keeping the rover secure during flight. These wheels can

then spin relative to the rocket body as the main body of the rover is

keyed to the thread preventing it from spinning. To test this a wheel and

small portion of thread was 3D printed. It was successful in testing so this

design has lots of merit.

 The scoop portion of the wheel was based of our team’s previous

design that successfully used similar scoops/flaps to collect the same

simulated ice pellets in the previous year’s NASA USLI competition.

Implementation

 We didn’t get past the prototype phase on this design. We instead decided to go with a drone so

we could pursue vision processing for fully autonomous collection. Even though I didn’t get the chance

to fully realize this design, I’m still proud of the CAD work that went into it. I gained lots of experience

with surface modeling designing the wheels. I also go the chance to simulate the forces on my design

using past flight data which was a new experience.

Click or scan the QR code to view the CAD for this design in its entirety on my website.

https://www.zacharycolimon.com/posts/2019-10-19/ROVER-PITT-ROCKETRY.html

Scouting Data Dashboard

Overview

 This is a data dashboard I built for my robotics team using Plotly. It was my first python project,

and even though I've gotten significantly better at writing python code, I'm still proud of the functionality.

I built this dashboard to quickly gain insights into a team's performance before a match. Before this

dashboard, that insight would come from the eye test alone, which meant I would need to watch at least

one match from every team before they became one of our two randomly assigned alliance partners.

Main Screen

 The main screen of the dashboard had data about what a

team did during match play. With a glance at this dashboard,

I could see each team's strengths and begin to strategize

around those.

 The bar chart on the top has its own dropdown where you

can select from a list of all the scoring categories. This can

give you an idea of how a team performs on average.

 The second graph shows you a team's score by match in

blue, and their alliance's score in orange. The team's score is

calculated based on scouting data our

team collects. This data is pulled from a google sheet automatically. The alliance's score is then pulled

from the Blue Alliance API. The Blue Alliance has the official scores for every match, so it's an

invaluable resource when analyzing a team's performance. There's a green dot on the match(es) where

the team plays the most defense on this same graph. This dot lets us go back and watch film from that

match to see how a team defends and drives.

 Finally, there's a chart showing what level(s) a team has gotten to in endgame, as well as a

diagram showing how much a team plays defense.

 Combining these four graphs gives us an idea of how a team will play before even looking at

their robot or talking to their drivers.

Radar Chart

 This radar chart was built using the same data behind the main screen. It was

created specifically for alliance selection. Alliance selection happens before the

playoffs of an FRC competition. The top 8 teams in the event chose their alliance

partners before the playoffs in a snake draft. I chose a radar chart to display this

data because by looking at the shape that a combination of teams made, you

could quickly build a well-rounded alliance. This didn't work very well in practice,

so we mostly relied on the main screen for data analysis.

Click or scan the QR code to view the scouting data dashboard on my website.

https://www.zacharycolimon.com/posts/2019-03-06/Scouting.html

Sol

Overview

 Sol was the 20th anniversary robot of FRC team 333. It was also

the robot I helped design and manufacture in my senior year of high

school. Sol competed in two regional events as well as the Tesla division

in the championships in Detroit. It did so without any significant failure.

The only thing we had to replace was a limit switch. Sol was designed

with top-down design principles in Fusion 360. This was to help facilitate

collaboration in both CAD and CAM. This was the third robot I worked to

build on Team 333.

Machining

 One of my main contributions to this robot as the CAD/CAM lead was

in machining the parts for this robot. I created and ran toolpaths for our

Tormach CNC mill and X-Carve CNC router to make the robot's parts.

To accomplish this, I created toolpaths in Fusion 360, brainstormed

and implemented workholding to keep the raw stock secure during

machining, probed stock, established work coordinate system origins,

and created/maintained tool libraries for both machines. Being the one

making the parts I designed was an invaluable experience.

Manufacturing these parts gave me insight into what makes a part

manufacturable.

Hatch Panel Mechanism

 The hatch panel mechanism was designed to slide and pivot any way it

needed too in order to passively grab a hatch panel from the human player

station. The mechanism has an embedded sensor that uses two LED's and a

photosensitive resistor to detect when it has hatch panels in it's possession.

When it comes time to let the hatch panel go this mechanism uses a single-

acting pneumatic cylinder to release and score the hatch panel. I did the

design work for this mechanism and it's embedded sensor.

Click or scan the QR code to view the CAD for this design in its entirety on my website.

https://www.zacharycolimon.com/posts/2019-02-24/SOL.html

	Portfolio Index
	Dynamic Keyboard Layers
	Overview
	Configuration
	Hardware implementation

	Rover Concept Pitt Rocketry
	Overview
	Wheels
	Implementation

	Scouting Data Dashboard
	Overview
	Main Screen
	Radar Chart

	Sol
	Overview
	Machining
	Hatch Panel Mechanism

